Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.331
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biomed Mater ; 19(3)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38574669

RESUMO

Recently,in vitromodels of intestinal mucosa have become important tools for drug screening and studying the physiology and pathology of the intestine. These models enable the examination of cellular behavior in diseased states or in reaction to alterations in the microenvironment, potentially serving as alternatives to animal models. One of the major challenges in constructing physiologically relevantin vitromodels of intestinal mucosa is the creation of three-dimensional microstructures that accurately mimic the integration of intestinal epithelium and vascularized stroma. Here, core-shell alginate (Alg) microspheres were generated to create the compartmentalized extracellular matrix microenvironment needed to simulate the epithelial and vascularized stromal compartments of the intestinal mucosa. We demonstrated that NIH-3T3 and human umbilical vein endothelial cells embedded in the core of the microspheres can proliferate and develop a vascular network, while human colorectal adenocarcinoma cells (Caco-2) can form an epithelial monolayer in the shell. Compared to Caco-2 monolayer encapsulated within the shell, the presence of the vascularized stroma enhances their proliferation and functionality. As such, our core-shell Alg microspheres provide a valuable method for generatingin vitromodels of vascularized intestinal mucosa with epithelial and vascularized stroma arranged in a spatially relevant manner and demonstrating near-physiological functionality.


Assuntos
Alginatos , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana , Mucosa Intestinal , Microesferas , Engenharia Tecidual , Alginatos/química , Humanos , Mucosa Intestinal/metabolismo , Animais , Camundongos , Células CACO-2 , Engenharia Tecidual/métodos , Células NIH 3T3 , Matriz Extracelular/metabolismo , Alicerces Teciduais/química , Ácidos Hexurônicos/química
2.
Int J Biol Macromol ; 267(Pt 2): 131389, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582461

RESUMO

This work developed Acer tegmentosum extract-mediated silver nanoparticles (AgNPs) loaded chitosan (CS)/alginic acid (AL) scaffolds (CS/AL-AgNPs) to enhance the healing of E. coli-infected wounds. The SEM-EDS and XRD results revealed the successful formation of the CS/AL-AgNPs. FTIR analysis evidenced that the anionic group of AL (-COO-) and cationic amine groups of CS (-NH3+) were ionically crosslinked to form scaffold (CS/AL). The CS/AL-AgNPs exhibited significant antimicrobial activity against both Gram-positive (G+) and Gram-negative (G-) bacterial pathogens, while being non-toxic to red blood cells (RBCs), the hen's egg chorioallantoic membrane (HET-CAM), and a non-cancerous cell line (NIH3T3). Treatment with CS/AL-AgNPs significantly accelerated the healing of E. coli-infected wounds by regulating the collagen deposition and blood parameters as evidenced by in vivo experiments. Overall, these findings suggest that CS/AL-AgNPs are promising for the treatment of infected wounds.


Assuntos
Acer , Alginatos , Antibacterianos , Quitosana , Escherichia coli , Nanopartículas Metálicas , Extratos Vegetais , Prata , Cicatrização , Quitosana/química , Quitosana/farmacologia , Nanopartículas Metálicas/química , Prata/química , Prata/farmacologia , Animais , Cicatrização/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Camundongos , Acer/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Células NIH 3T3 , Antibacterianos/farmacologia , Antibacterianos/química , Alginatos/química , Alginatos/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Alicerces Teciduais/química
3.
Int J Pharm ; 654: 123994, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38484859

RESUMO

Small interfering RNA (siRNA) holds great potential to treat many difficult-to-treat diseases, but its delivery remains the central challenge. This study aimed at investigating the suitability of polymer-lipid hybrid nanomedicines (HNMeds) as novel siRNA delivery platforms for locoregional therapy of glioblastoma. Two HNMed formulations were developed from poly(lactic-co-glycolic acid) polymer and a cationic lipid: 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or 3ß-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol). After characterization of the HNMeds, a model siRNA was complexed onto their surface to form HNMed/siRNA complexes. The physicochemical properties and siRNA binding ability of complexes were assessed over a range of nitrogen-to-phosphate (N/P) ratios to optimize the formulations. At the optimal N/P ratio of 10, complexes effectively bound siRNA and improved its protection from enzymatic degradation. Using the NIH3T3 mouse fibroblast cell line, DOTAP-based HNMeds were shown to possess higher cytocompatibility in vitro over the DC-Chol-based ones. As proof-of-concept, uptake and bioefficacy of formulations were also assessed in vitro on U87MG human glioblastoma cell line expressing luciferase gene. Complexes were able to deliver anti-luciferase siRNA and induce a remarkable suppression of gene expression. Noteworthy, the effect of DOTAP-based formulation was not only about three-times higher than DC-Chol-based one, but also comparable to lipofectamine model transfection reagent. These findings set the basis to exploit this nanosystem for silencing relevant GB-related genes in further in vitro and in vivo studies.


Assuntos
Ácidos Graxos Monoinsaturados , Glioblastoma , Lipossomos , Compostos de Amônio Quaternário , Camundongos , Animais , Humanos , Lipossomos/química , Polímeros/química , RNA Interferente Pequeno , Glioblastoma/genética , Glioblastoma/terapia , Células NIH 3T3 , Nanomedicina , Lipídeos/química
4.
Hum Exp Toxicol ; 43: 9603271241231947, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324556

RESUMO

Objectives: Doxorubicin (DOX) is a highly effective chemotherapeutic used to treat many adult and pediatric cancers, such as solid tumors, leukemia, lymphomas and breast cancer. It can also cause injuries to multiple organs, including the heart, liver, and brain or kidney, although cardiotoxicity is the most prominent side effect of DOX. In this study, we examined the potential effects of DOX on autophagy activity in two different mouse fibroblasts.Methods: Mouse embryonic fibroblasts (NIH3T3) and mouse primary cardiac fibroblasts (CFs) were treated with DOX to assess changes in the expression of two commonly used autophagy protein markers, LC3II and p62. We also examined the effects of DOX the on expression of key genes that encode components of the molecular machinery and regulators modulating autophagy in response to both extracellular and intracellular signals.Results: We observed that LC3II levels increased and p62 levels decreased following the DOX treatment in NIH3T3 cells. However, similar effects were not observed in primary cardiac fibroblasts. In addition, DOX treatment induced the upregulation of a significant number of genes involved in autophagy in NIH3T3 cells, but not in primary cardiac fibroblasts.Conclusions: Taken together, these results indicate that DOX upregulates autophagy in fibroblasts in a cell-specific manner.


Assuntos
Estresse Oxidativo , Transdução de Sinais , Humanos , Criança , Animais , Camundongos , Células NIH 3T3 , Fibroblastos , Doxorrubicina/toxicidade , Autofagia , Cardiotoxicidade/metabolismo , Miócitos Cardíacos/metabolismo , Apoptose
5.
Int J Nanomedicine ; 19: 1749-1766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414527

RESUMO

Purpose: Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer. However, the effect of current treatment strategies by inducing tumor cell apoptosis alone is not satisfactory. The growth, metastasis and treatment sensitivity of tumors can be strongly influenced by cancer-associated fibroblasts (CAFs) in the microenvironment. Effective cancer therapies may need to target not only the tumor cells directly but also the CAFs that protect them. Methods: Celastrol and small-sized micelles containing betulinic acid were co-encapsulated into liposomes using the thin-film hydration method (CL@BM). Folic acid was further introduced to modify liposomes as the targeting moiety (F/CL@BM). We established a novel NIH3T3+4T1 co-culture model to mimic the tumor microenvironment and assessed the nanocarrier's inhibitory effects on CAFs-induced drug resistance and migration in the co-culture model. The in vivo biological distribution, fluorescence imaging, biological safety evaluation, and combined therapeutic effect evaluation of the nanocarrier were carried out based on a triple-negative breast cancer model. Results: In the present study, a novel multifunctional nano-formulation was designed by combining the advantages of sequential release, co-loading of tretinoin and betulinic acid, and folic acid-mediated active targeting. As expected, the nano-formulation exhibited enhanced cytotoxicity in different cellular models and effectively increased drug accumulation at the tumor site by disrupting the cellular barrier composed of CAFs by tretinoin. Notably, the co-loaded nano-formulations proved to be more potent in inhibiting tumor growth in mice and also showed better anti-metastatic effects in lung metastasis models compared to the formulations with either drug alone. This novel drug delivery system has the potential to be used to develop more effective cancer therapies. Conclusion: Targeting CAFs with celastrol sensitizes tumor cells to chemotherapy, increasing the efficacy of betulinic acid. The combination of drugs targeting tumor cells and CAFs may lead to more effective therapies against various cancers.


Assuntos
Fibroblastos Associados a Câncer , Triterpenos Pentacíclicos , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Lipossomos/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Células NIH 3T3 , Ácido Betulínico , Tretinoína/farmacologia , Ácido Fólico/farmacologia , Linhagem Celular Tumoral , Microambiente Tumoral
6.
Genes Chromosomes Cancer ; 63(2): e23226, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38380774

RESUMO

Epithelioid hemangioendothelioma (EHE) is a rare endothelial sarcoma associated with a high incidence of metastases and for which there are no standard treatment options. Based on disease-defining mutations, most EHEs are classified into two subtypes: WWTR1::CAMTA1-fused EHE or YAP1::TFE3-fused EHE. However, rare non-canonical fusions have been identified in clinical samples of EHE cases and are challenging to classify. In this study, we report the identification of a novel WWTR1::TFE3 fusion variant in an EHE patient using targeted RNA sequencing. Histologically, the tumor exhibited hybrid morphological characteristics between WWTR1::CAMTA1-fused EHE and YAP1::TFE3-fused EHE. In addition to the driver fusion, there were six additional secondary mutations identified, including a loss-of-function FANCA mutation. Furthermore, in vitro studies were conducted to investigate the tumorigenic function of the WWTR1::TFE3 fusion protein in NIH3T3 cells and demonstrated that WWTR1::TFE3 promotes colony formation in soft agar. Finally, as the wild-type WWTR1 protein relies on binding the TEAD family of transcription factors to affect gene transcription, mutation of the WWTR1 domain of the fusion protein to inhibit such binding abrogates the transformative effect of WWTR1::TFE3. Overall, we describe a novel gene fusion in EHE with a hybrid histological appearance between the two major genetic subtypes of EHE. Further cases of this very rare subtype of EHE will need to be identified to fully elucidate the clinical and pathological characteristics of this unusual subtype of EHE.


Assuntos
Hemangioendotelioma Epitelioide , Transativadores , Humanos , Camundongos , Animais , Transativadores/genética , Hemangioendotelioma Epitelioide/genética , Hemangioendotelioma Epitelioide/patologia , Células NIH 3T3 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fusão Gênica , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
7.
Oncol Res ; 32(3): 477-487, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361760

RESUMO

Intracellular communications between breast cancer and fibroblast cells were reported to be involved in cancer proliferation, growth, and therapy resistance. The hallmarks of cancer-fibroblast interactions, consisting of caveolin 1 (Cav1) and mono-carboxylate transporter 4 (MCT4) (metabolic coupling markers), along with IL-6, TGFß, and lactate secretion, are considered robust biomarkers predicting recurrence and metastasis. In order to promote a novel phenotype in normal fibroblasts, we predicted that breast cancer cells could be able to cause loss of Cav1 and increase of MCT4, as well as elevate IL-6 and TGFß in nearby normal fibroblasts. We created a co-culture model using breast cancer (4T1) and normal fibroblast (NIH3T3) cell lines cultured under specific experimental conditions in order to directly test our theory. Moreover, we show that long-term co-culture of breast cancer cells and normal fibroblasts promotes loss of Cav1 and gain of MCT4 in adjacent fibroblasts and increase lactate secretion. These results were validated using the monoculture of each group separately as a control. In this system, we show that metformin inhibits IL-6 and TGFß secretion and re-expresses Cav1 in both cells. However, MCT4 and lactate stayed high after treatment with metformin. In conclusion, our work shows that co-culture with breast cancer cells may cause significant alterations in the phenotype and secretion of normal fibroblasts. Metformin, however, may change this state and affect fibroblasts' acquired phenotypes. Moreover, mitochondrial inhibition by metformin after 8 days of treatment, significantly hinders tumor growth in mouse model of breast cancer.


Assuntos
Neoplasias da Mama , Metformina , Animais , Camundongos , Humanos , Feminino , Metformina/farmacologia , Metformina/metabolismo , Técnicas de Cocultura , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Células NIH 3T3 , Estresse Oxidativo , Neoplasias da Mama/patologia , Fibroblastos/metabolismo , Fenótipo , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral
8.
Carbohydr Polym ; 331: 121878, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38388061

RESUMO

Pectins are a class of soluble polysaccharides that can have anticancer properties through several mechanisms. This study aimed to characterize the molecular structure of water-soluble fractions (WSF) derived from ripe and unripe papayas and assess their biological effects in two models: the 3D colon cancer spheroids to measure cell viability and cytotoxicity, and the in vivo model to investigate the inhibition of preneoplastic lesions in rats. WSF yield was slightly higher in ripe papaya, and both samples mainly consisted of pectin. Both pectins inhibited the growth of colon cancer HT29 and HCT116 spheroids. Unripe pectin disturbed HT29/NIH3T3 spheroid formation, decreased HCT116 spheroid viability, and increased spheroid cytotoxicity. Ripe pectin had a more substantial effect on the reduction of spheroid viability for HT29 spheroids. Furthermore, in vivo experiments on a rat model revealed a decrease in aberrant crypt foci (ACF) formation for both pectins and increased apoptosis in colonocytes for ripe papaya pectins. The results suggest potential anticancer properties of papaya pectin, with ripe pectin showing a higher potency.


Assuntos
Carica , Neoplasias do Colo , Ratos , Animais , Camundongos , Pectinas/farmacologia , Pectinas/química , Carica/química , Células NIH 3T3 , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Proliferação de Células , Colo
9.
ACS Biomater Sci Eng ; 10(2): 825-837, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38267012

RESUMO

This study aimed to evaluate the bioactivity of poly(ether ether ketone) (PEEK) after surface modification by persistent photoconductive strontium titanate (SrTiO3) magnetron sputtering and ultraviolet (UV) C irradiation. According to the different modifications, the PEEK specimens were randomly divided into five groups (n = 38/group): PEEK, Sr100-PEEK, Sr200-PEEK, UV/PEEK, and UV/Sr200-PEEK. Then, the specimens of Sr100-PEEK and Sr200-PEEK groups were, respectively, coated with 100 and 200 nm thickness photocatalyst SrTiO3 on the PEEK surface by magnetron sputtering. Subsequently, UV-C light photofunctionalized the specimens of PEEK and Sr200-PEEK groups to form UV/PEEK and UV/Sr200-PEEK groups. The specimens were characterized by a step meter, scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDX), and a water contact angle meter. The release test of the Sr ion was performed by inductively coupled plasma mass spectrometry (ICP-MS). In vitro study, osteogenic activity (MC3T3-E1 osteoblast-like cells) and epithelial and connective tissue attachment (gingival epithelial cells GE1 and fibroblasts NIH3T3) were analyzed in five groups. Surface morphology of the specimens was changed after coating, and the Sr content on the Sr-PEEK surface was increased with increasing coating thickness. In addition, the contact angle was increased significantly after magnetron sputtering. After UV-C photofunctionalization, the content of surface elements changed and the contact angle was decreased. The release of Sr ion was sustained, and the final cumulative release amount did not exceed the safety limit. In vitro experiments showed that SrTiO3 improved the cell activity of MC3T3-E1 and UV-C irradiation further enhanced the osteogenic performance of PEEK. Besides, UV-C irradiation also significantly promoted the cell viability, development, and expression of adhesion proteins of GE1 and NIH3T3 on PEEK. The present investigation demonstrated that nano SrTiO3 coating with UV-C photofunctionalization synergistically enhanced the osteogenic properties and soft tissue sealing function of PEEK in vitro.


Assuntos
Benzofenonas , Cetonas , Óxidos , Polietilenoglicóis , Polímeros , Estrôncio , Titânio , Camundongos , Animais , Cetonas/farmacologia , Polietilenoglicóis/farmacologia , Polietilenoglicóis/química , Éter , Células NIH 3T3 , Etil-Éteres , Éteres
10.
Mol Biol Rep ; 51(1): 174, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252353

RESUMO

BACKGROUND: Cell-free DNA (cfDNA) is a source for liquid biopsy used for cancer diagnosis, therapy selection, and disease monitoring due to its non-invasive nature and ease of extraction. However, cfDNA also participates in cancer development and progression by horizontal transfer. In humans, cfDNA circulates complexed with extracellular vesicles (EV) and macromolecular complexes such as nucleosomes, lipids, and serum proteins. The present study aimed to demonstrate whether cfDNA not associated with EV induces cell transformation and tumorigenesis. METHODS: Supernatant of the SW480 human colon cancer cell line was processed by ultracentrifugation to obtain a soluble fraction (SF) and a fraction associated with EV (EVF). Primary murine embryonic fibroblast cells (NIH3T3) underwent passive transfection with these fractions, and cell proliferation, cell cycle, apoptosis, cell transformation, and tumorigenic assays were performed. Next, cfDNA was analyzed by electronic microscopy, and horizontal transfer was assessed by human mutant KRAS in recipient cells via PCR and recipient cell internalization via fluorescence microscopy. RESULTS: The results showed that the SF but not the EVF of cfDNA induced proliferative and antiapoptotic effects, cell transformation, and tumorigenesis in nude mice, which were reduced by digestion with DNAse I and proteinase K. These effects were associated with horizontal DNA transfer and cfDNA internalization into recipient cells. CONCLUSIONS: The results suggest pro-tumorigenic effects of cfDNA in the SF that can be offset by enzyme treatment. Further exploration of the horizontal tumor progression phenomenon mediated by cfDNA is needed to determine whether its manipulation may play a role in cancer therapy.


Assuntos
Ácidos Nucleicos Livres , Humanos , Animais , Camundongos , Ácidos Nucleicos Livres/genética , Camundongos Nus , Células NIH 3T3 , Carcinogênese , DNA
11.
PLoS Pathog ; 20(1): e1011640, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38215165

RESUMO

Retroviral reverse transcription starts within the capsid and uncoating and reverse transcription are mutually dependent. There is still debate regarding the timing and cellular location of HIV's uncoating and reverse transcription and whether it occurs solely in the cytoplasm, nucleus or both. HIV can infect non-dividing cells because there is active transport of the preintegration complex (PIC) across the nuclear membrane, but Murine Leukemia Virus (MLV) is thought to depend on cell division for replication and whether MLV uncoating and reverse transcription is solely cytoplasmic has not been studied. Here, we used NIH3T3 and primary mouse dendritic cells to determine where the different stages of reverse transcription occur and whether cell division is needed for nuclear entry. Our data strongly suggest that in both NIH3T3 cells and dendritic cells (DCs), the initial step of reverse transcription occurs in the cytoplasm. However, we detected MLV RNA/DNA hybrid intermediates in the nucleus of dividing NIH3T3 cells and non-dividing DCs, suggesting that reverse transcription can continue after nuclear entry. We also confirmed that the MLV PIC requires cell division to enter the nucleus of NIH3T3 cells. In contrast, we show that MLV can infect non-dividing primary DCs, although integration of MLV DNA in DCs still required the viral p12 protein. Knockdown of several nuclear pore proteins dramatically reduced the appearance of integrated MLV DNA in DCs but not NIH3T3 cells. Additionally, MLV capsid associated with the nuclear pore proteins NUP358 and NUP62 during infection. These findings suggest that simple retroviruses, like the complex retrovirus HIV, gain nuclear entry by traversing the nuclear pore complex in non-mitotic cells.


Assuntos
Infecções por HIV , Complexo de Proteínas Formadoras de Poros Nucleares , Animais , Camundongos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Células NIH 3T3 , Vírus da Leucemia Murina/genética , Proteínas Virais , Proteínas do Capsídeo , Retroviridae , DNA , Células Dendríticas
12.
Bioorg Chem ; 143: 107018, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38071874

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal, chronic and progressive lung disease that threaten public health like many cancers. In this study, targeting the significant driving factor, inflammatory response, of the IPF, several conjugates of pirfenidone (PFD) with non-steroidal anti-inflammatory drugs (NSAIDs), along with their derivatives, were designed and synthesized to enhance the anti-IPF potency of PFD. Among these compounds, the (S)-ibuprofen-PFD conjugate 5b exhibited the most potent anti-proliferation activity against NIH3T3 cells, demonstrating up to a 343-fold improvement compared to PFD (IC50 = 0.04 mM vs IC50 = 13.72 mM). Notably, 5b exhibited superior activity in inhibiting the migration of macrophages induced by TGF-ß compared to PFD. Additionally, 5b demonstrated significant suppression of TGF-ß-induced migration of NIH3T3 cells and induction of apoptosis in NIH3T3 cells. Mechanistic studies revealed that 5b reduced the expression of collagen I and α-SMA by inhibiting the TGF-ß/SMAD3 pathway. In a bleomycin-induced pulmonary fibrosis model, treatment with 5b (40 mg/kg/day, orally) exhibited a more pronounced effect on reducing the degree of histopathological changes in lung tissue and alleviating collagen deposition compared to PFD (100 mg/kg/day, orally). Moreover, 5b could block the expression of collagen I, α-SMA, fibronectin, and pro-inflammatory factors (IL-6, IFN-γ, and TNF-α) compared to PFD, while demonstrating low toxicity in vivo. These preliminary results indicated that the hybridization of PFD with NSAIDs represented an effective modification approach to improve the anti-IPF potency of PFD. Consequently, 5b emerged as a promising candidate for the further development of new anti-IPF agents.


Assuntos
Fibrose Pulmonar Idiopática , Animais , Camundongos , Humanos , Células NIH 3T3 , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Piridonas/farmacologia , Piridonas/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Colágeno/metabolismo , Colágeno/uso terapêutico , Colágeno Tipo I/metabolismo , Fator de Crescimento Transformador beta/metabolismo
13.
Autophagy ; 20(1): 216-217, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37669771

RESUMO

PTEN is a negative modulator of the INS-PI3K-AKT pathway and is an essential regulator of metabolism and cell growth. PTEN is one of the most commonly mutated tumor suppressors in cancer. However, PTEN overexpression extends the lifespan of both sexes of mice. We recently showed that PTEN is necessary and sufficient to activate chaperone-mediated autophagy (CMA) in the mouse liver and cultured cells. Selective protein degradation via CMA is required to suppress glycolysis and fatty acid synthesis when PTEN is overexpressed. Thus, activation of CMA downstream of PTEN might modulate health and metabolism through selective degradation of key metabolic enzymes.


Assuntos
Autofagia Mediada por Chaperonas , PTEN Fosfo-Hidrolase , Animais , Camundongos , PTEN Fosfo-Hidrolase/metabolismo , Células NIH 3T3 , Transdução de Sinais , Fígado/metabolismo , Glicólise , Ácidos Graxos/biossíntese , Masculino , Feminino , Lisossomos/metabolismo
14.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119629, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37981034

RESUMO

The migratory and invasive potential of tumour cells relies on the actin cytoskeleton. We previously demonstrated that the tricyclic compound, TBE-31, inhibits actin polymerization and here we further examine the precise interaction between TBE-31 and actin. We demonstrate that iodoacetamide, a cysteine (Cys) alkylating agent, interferes with the ability of TBE-31 to interact with actin. In addition, in silico analysis identified Cys 217, Cys 272, Cys 285 and Cys 374 as potential binding sites for TBE-31. Using mass spectrometry analysis, we determined that TBE-31 associates with actin with a stoichiometric ratio of 1:1. We mutated the identified cysteines of actin to alanine and performed a pull-down analysis with a biotin labeled TBE-31 and demonstrated that by mutating Cys 374 to alanine the association between TBE-31 and actin was significantly reduced, suggesting that TBE-31 binds to Cys 374. A characterization of the NIH3T3 cells overexpressing eGFP-actin-C374A showed reduced stress fiber formation, suggesting Cys 374 is necessary for efficient incorporation into filamentous actin. Furthermore, migration of eGFP-Actin-WT expressing cells were observed to be inhibited by TBE-31, however fewer eGFP-Actin-C374A expressing cells were observed to migrate compared to the cells expressing eGFP-Actin-WT in the presence or absence of TBE-31. Taken together, our results suggest that TBE-31 binds to Cys 374 of actin to inhibit actin stress fiber formation and may potentially be a mechanism through which TBE-31 inhibits cell migration.


Assuntos
Actinas , Cisteína , Fenantrenos , Camundongos , Animais , Actinas/genética , Actinas/metabolismo , Cisteína/genética , Cisteína/metabolismo , Acetileno , Alcinos , Fibras de Estresse , Células NIH 3T3 , Movimento Celular , Alanina
15.
Int J Radiat Oncol Biol Phys ; 118(1): 203-217, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37610394

RESUMO

PURPOSE: Radiation-induced heart fibrosis (RIHF) is a severe consequence of radiation-induced heart damage (RIHD) leading to impaired cardiac function. The involvement of oncostatin M (OSM) and its receptor (OSMR) in RIHD remains unclear. This study aimed to investigate the specific mechanism of OSM/OSMR in RIHF/RIHD. METHODS AND MATERIALS: RNA sequencing was performed on heart tissues from a RIHD mouse model. OSM levels were assessed in serum samples obtained from patients receiving thoracic radiation therapy (RT), as well as in RIHF mouse heart tissues and serum using enzyme-linked immunosorbent assay. Fiber activation was evaluated through costimulation of primary cardiac fibroblasts and NIH3T3 cells with RT and OSM, using Western blotting, immunofluorescence, and quantitative Polymerase Chain Reaction (qPCR). Adeno-associated virus serotype 9-mediated overexpression or silencing of OSM specifically in the heart was performed in vivo to assess cardiac fibrosis levels by transthoracic echocardiography and pathologic examination. The regulatory mechanism of OSM on the transcription level of SMAD4 was further explored in vitro using mass spectrometric analysis, chromatin immunoprecipitation-qPCR, and DNA pull-down. RESULTS: OSM levels were elevated in the serum of patients after thoracic RT as well as in RIHF mouse cardiac endothelial cells and mouse serum. The OSM rate (post-RT/pre-RT) and the heart exposure dose in RT patients showed a positive correlation. Silencing OSMR in RIHF mice reduced fibrosis, while OSMR overexpression increased fibrotic responses. Furthermore, increased OSM promoted histone acetylation (H3K27ac) in the SMAD4 promoter region, influencing SMAD4 transcription and subsequently enhancing fibrotic response. CONCLUSIONS: The findings demonstrated that OSM/OSMR signaling promotes SMAD4 transcription in cardiac fibroblasts through H3K27 hyperacetylation, thereby promoting radiation-induced cardiac fibrosis and manifestations of RIHD.


Assuntos
Células Endoteliais , Fibroblastos , Animais , Humanos , Camundongos , Fibroblastos/metabolismo , Fibrose , Células NIH 3T3 , Oncostatina M/genética , Oncostatina M/metabolismo , Oncostatina M/farmacologia , Receptores de Oncostatina M/metabolismo , Proteína Smad4
16.
Int J Biol Macromol ; 258(Pt 1): 128778, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103674

RESUMO

The emergence of antibiotic resistance has had a severe impact on human health and economic burdens, drawing attention to the development of novel antimicrobial therapies. Polymer-metal composites have shown evidence of therapeutic applications by exerting antimicrobial effects and delivering these antimicrobials with biocompatibility. Therefore, this study prepared and characterized chitosan (CS)-fabricated tellurium nanoparticles (Te NPs) for enhanced antimicrobial, antioxidant, and cytotoxicity applications. The CS-Te NPs were spherical, polydisperse, and distributed within the CS matrix with an average size of 37.48 ± 14.56 nm, as confirmed by TEM analysis. CS-Te NPs exhibited positive zeta potential in neutral (pH 7.0: 7.90 ± 1.86 mV) and acidic environment. XRD analysis confirmed the crystalline nature of CS-Te NPs, and these nanoparticles exhibited good thermal and less porosity. A higher release of Te ions occurred from CS-Te NPs at an acidic pH. Further, CS-Te NPs displayed stronger antibacterial and antibiofilm activity against E. coli and S. enterica. Furthermore, CS-Te NPs exhibited significant free radical scavenging activity against ABTS and DPPH free radicals. Moreover, these nanoparticles demonstrated cytotoxicity against cancerous cells (A549 and PC3 cells) when compared to normal cells (NIH3T3 cells). Therefore, this study suggests that CS-Te NPs could serve as a substantial therapeutic agent.


Assuntos
Quitosana , Nanopartículas , Camundongos , Animais , Humanos , Quitosana/química , Telúrio , Escherichia coli , Células NIH 3T3 , Nanopartículas/química , Antibacterianos/química
17.
BMC Complement Med Ther ; 23(1): 447, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087220

RESUMO

BACKGROUND: Teucrium hyrcanicum L. (family Lamiaceae) is widely distributed in the North and Northwest of Iran. It has been used in the form of tea, tonic, and tincture for the treatment of various diseases such as cough, rheumatism, and fever. METHODS: In this study, the total phenolic and flavonoid contents, antioxidant and cytotoxic activities of methanol extract and different fractions of T. hyrcanicum were measured. Furthermore, the potential ability of T. hyrcanicum to protect against H2O2-induced oxidative stress was tested on the NIH3T3 cell line. Then, the isolation and structure elucidation of the compounds were performed on the most potent fractions. Finally, the quantification of isolated compounds in methanol extract (ME) was done by the HPLC method. Isolated phytochemicals were assessed for the cytotoxic and antioxidant activities. RESULTS: The results indicated that the methanol fraction (MF) had the highest amount of phenolic and flavonoid contents (69.36 mg GAE/g extract and 68.95 mg QE/g extract). The highest radical scavenging activities were observed from MF and ME (IC50 44.32 and 61.12 µg.ml-1, respectively). The best cytotoxicity was obtained by ethyl acetate fraction (EF) against A431 and MCF7 cell lines (IC50 values of 235.4and 326.6 µg.ml-1, respectively). The pretreatment with MF exerts the highest reduction in malondialdehyde (MDA) formation (IC50 2.51 µM, p < 0.001) compared to the H2O2 group (5.77 µM). Also, MF significantly inhibited H2O2-induced Glutathione (GSH) oxidation (p < 0.001). Furthermore, two phenolic compounds, acteoside and quercetin, were isolated and identified in MF and EF, respectively. The IC50 values of acteoside and quercetin in the DPPH assay were 7.19 and 5.56 µg.ml-1, respectively. Both quercetin and acteoside significantly reduced the MDA formation and inhibited GSH oxidation, which was comparable with BHA (as a standard antioxidant) (p < 0.05). Acteoside demonstrated significant cytotoxicity against all tested cell lines (IC50 = 32 to 145 µg.ml-1). The HPLC quantification of isolated compounds revealed that the quantity of acteoside and quercetin in ME were 93.31 and 16.87 µg.mg-1, respectively. CONCLUSION: The isolated compounds (quercetin and acteoside) had significant antioxidant activities and revealed a protective effect on H2O2-induced oxidative stress which was comparable with BHA.


Assuntos
Antineoplásicos , Teucrium , Animais , Camundongos , Antioxidantes/farmacologia , Antioxidantes/química , Peróxido de Hidrogênio/toxicidade , Quercetina/farmacologia , Metanol , Células NIH 3T3 , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Estresse Oxidativo , Flavonoides/farmacologia , Flavonoides/química , Antineoplásicos/farmacologia
18.
Molecules ; 28(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005366

RESUMO

Poly(amidoamine) (PAMAM) dendrimers have attracted considerable attention in the field of gene therapy due to their flexibility in introducing different functional moieties and reduced toxicity at low generations. However, their transfection efficiency remains a limitation. Therefore, an essential approach for improving their transfection efficiency as gene carriers involves modifying the structure of PAMAM by conjugating functional groups around their surface. In this study, we successfully conjugated an RRHRH oligopeptide to the surface of PAMAM generation 2 (PAMAM G2) to create RRHRH-PAMAM G2. This construction aims to condense plasmid DNA (pDNA) and facilitate its penetration into cell membranes, leading to its promising potential for gene therapy. RRHRH-PAMAM G2/pDNA complexes were smaller than 100 nm and positively charged. Nano-polyplexes can enter the cell and show a high transfection efficiency after 24 h of transfection. The RRHRH-PAMAM G2 was non-toxic to HeLa, NIH3T3, A549, and MDA-MB-231 cell lines. These results strongly suggest that RRHRH-PAMAM G2 holds promise as a gene carrier for gene therapy owing to its biocompatibility and ability to deliver genes to the cell.


Assuntos
Dendrímeros , Camundongos , Animais , Humanos , Dendrímeros/química , Células NIH 3T3 , DNA/química , Plasmídeos/genética , Transfecção , Oligopeptídeos/química
19.
J Mater Chem B ; 11(47): 11290-11299, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38013459

RESUMO

The abuse of antibiotics has led to serious environmental pollution and the emergence of drug-resistant bacteria surpassing the replacement rate of antibiotics. Herein, near-infrared fluorescent carbon dots (NIR-CDs) were developed to meet the requirements for oxytetracycline (OTC) detection in food and water samples (milk, honey, and lake water) with a detection limit of 0.112 µM. These NIR-CDs, possessing excellent water-solubility, deep tissue penetration ability, and tunable optical properties, exhibit maximum emission at 790 nm (NIR-I window). Unlike traditional CDs, this novel NIR-CDs nanoprobe provides a dual response in the presence of OTC (quenching and bathochromic shifting), without obvious interference from other existing biomolecules and metal ions. Additionally, these NIR-CDs exhibit excellent photostability and multi-resistance under UV irradiation, exceptional pH stability (pH 6-12), reliable long-time exposure, and durability in ionic (NaCl) environments. Moreover, NIR-CDs and NIR-CDs@OTC are nontoxic and were successfully utilized for cell-imaging applications in normal (NIH3T3) and cancer cells (HeLa).


Assuntos
Oxitetraciclina , Pontos Quânticos , Animais , Camundongos , Pontos Quânticos/química , Carbono/química , Fluorescência , Células NIH 3T3 , Antibacterianos/farmacologia , Corantes Fluorescentes/química , Água
20.
Skin Res Technol ; 29(11): e13465, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38009021

RESUMO

OBJECTIVE: We aimed to develop an electroactive antibacterial material for the treatment of skin wound diseases. METHOD: To this aim, we modified chitosan (CS), a biocompatible polymer, by coupling it with graphene (rGO) and an antimicrobial polypeptide DOPA-PonG1. The material's effect on skin injury healing was studied in combination with external electrical stimulation (EEM). The structure, surface composition, and hydrophilicity of the modified CS materials were evaluated using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and contact angle measurements. We studied NIH3T3 cells cultured with modified materials and subjected to EEM to assess viability, adhesion, and tissue repair-related gene expression. RESULTS: SEM data demonstrated that rGO was distributed uniformly on the surface of the CS material, increasing surface roughness, and antimicrobial peptides had minimal impact on surface morphology. FTIR confirmed the uniform distribution of rGO and antibacterial peptides on the material surface. Both rGO and DOPA-PonG1 enhanced the hydrophilicity of CS materials, with rGO also improving tensile strength. The dual modification of CS with rGO and DOPA-PonG1 synergistically increased antibacterial efficacy. Cellular events and gene expression relevant to tissue repair process were enhanced by these modifications. Furthermore, EEM accelerated epidermal regeneration more than the material alone. In a rat skin wound model, DOPA-PonG1@CS/rGO dressing combined with electrical stimulation exhibited accelerated healing of skin defect. CONCLUSION: Overall, our results demonstrate that CS materials modified with rGO and DOPA-PonG1 have increased hydrophilicity, antibacterial characteristics, and tissue regeneration capacities. This modified material in conjunction with EEM hold promise for the clinical management for dermal wounds.


Assuntos
Antibacterianos , Quitosana , Camundongos , Ratos , Animais , Células NIH 3T3 , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Quitosana/farmacologia , Quitosana/química , Estimulação Elétrica , Bandagens , Di-Hidroxifenilalanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA